Remote predictive monitoring: more efficiency and savings in machine maintenance

Remote predictive monitoring is an evolution of traditional methods since using intelligent sensors makes it possible to inspect machines over long distances and full-time.

Nowadays, industrial parks of large companies already use the resources of Industry 4.0 to improve the performance of their equipment and ensure uninterrupted production, providing competitive advantages in the market.

In this article, we will address how remote predictive maintenance works, its benefits compared to on-site maintenance, and for which factories it is the most indicated.

On-site monitoring challenges

Until recently, traditional predictive maintenance consisted of collecting data using a single sensor attached to the end of the equipment from a cable. This portable instrument required a person to be present in the plant to collect the data, usually on a monthly scale. In traditional predictive monitoring, half the cost of an online system was spent on infrastructure.

In addition, the main challenge of face-to-face monitoring was accessing factories and industrial parks that were difficult to access, especially when collections had to be carried out at high intervals.

Remote predictive monitoring: how it works

Remote predictive monitoring is done by installing sensors on equipment previously chosen by the technical team and the maintenance manager. As it is wireless, it is possible to install the sensors in several machines without the impediment of cabling.

From this, data is collected and sent to a bank that gathers information about the performance of the equipment. When an unusual vibration, temperature, pressure, or oil consumption is identified, no matter how small, the maintenance manager has access to this information through a platform that can be accessed on several devices.

Thus, drawing up an action plan to get the equipment working again at maximum performance is possible.

Benefits of Remote Sensing

Data analysis with AI

Big data and artificial intelligence resources make monitoring different types of data remotely possible. This information is processed according to each specific condition, predicting failures and damage from full-time trend curves and criticality level classification.

Ease data visualization

Another benefit of remote sensing is to have access to the collected data practically and transparently.

In SEMEQ, we have an online platform that can be accessed on different devices, in which the data of each monitored piece of equipment is available. Thus, it is possible to have significant insights to improve the performance of your industrial park.

Full equipment coverage

A significant difference between traditional and remote monitoring is the possibility of monitoring equipment online every day of the week.

To have an idea, in manual collections, the data is usually extracted only once a month. With wifi sensors, the reader is done once an hour, which means 720 groups per month.

For which styles of factory plants is remote predictive monitoring indicated?

Plants far from urban centers

Remote monitoring can connect hundreds or thousands of points in industrial plants, extending the network connection to larger areas.

Plants with difficult access

Online monitoring proves to be particularly useful in plants installed in difficult-to-access locations since it is unnecessary to go to the site to collect data.

Multiple plants

Companies with multiple plants need great efforts to monitor each of their equipment. With the facilities of wireless sensors, it is possible to watch all of them simultaneously, every day.

Plants with uninterrupted operation

Plants that cannot stop their production for maintenance benefit from remote monitoring, as the sensors identify potential failures with a high degree of sensitivity, ensuring the resolution of the problem before it even happens.

Learn how we perform remote predictive monitoring of your equipment

SEMEQ’s predictive monitoring process involves several online and offline steps and techniques. With extensive experience, we collaborate with more than 300 employees monitoring 500 factories in 40 countries.

With an in-house R&D team, SEMEQ develops and manufactures intelligent wireless vibration sensors, artificial intelligence algorithms, and applications dedicated to predictive monitoring.

Find out how we perform remote monitoring of your equipment:

  • We conducted a study to understand which equipment needs to be monitored.
  • We install wireless sensors.
  • Our technical team monitors the results.
  • We generate a report with information and insights.
  • We trigger the maintenance orders.

Our differences

* Expertise in fault detection: with nearly 30 years of experience, SEMEQ technicians know the exact requirements to wirelessly monitor your machines and ensure the continuity of your production line.

* Technology domain: Our online predictive maintenance monitoring company has a Research and Development department. We can produce our own sensors according to customer needs with these resources.

* Practice with various equipment: the predictive service can be applied to motors, power electronics, boilers, steam system components, transformers, capacitors, and fuses, among other equipment.

* Experience in more than ten segments: we have already worked with the most different industrial niches, such as beverages, food, mining, automotive, etc.

Talk to our consultants and remotely monitor assets in your Industrial Park.

Smart sensors in Industry 4.0: learn how they remodeled predictive monitoring

Many American industries are undergoing a digital transformation, with the implementation of technologies such as artificial intelligence, the Internet of Things (IoT), advanced robotics, and cloud computing. These technologies are helping companies to optimize their operations, improve productivity, and create new business models and revenue streams.

In predictive monitoring in industries, one of the most innovative technologies in Industry 4.0 is smart sensors, which can generate a significant volume of data and constantly monitor the equipment.

Using this technology in industrial plants makes the machines maintain high performance throughout their use, which leads to a highly productive park and competitive advantage for the company.

In this article, learn more about the role of smart sensors in Industry 4.0 and its benefits in industrial parks.

Evolution of predictive monitoring and Industry 4.0

With the concept of predictive maintenance in the mid-1970s, software development allowed better planning, control, and monitoring of maintenance services.

However, despite these advances, the lack of interaction between the engineering, maintenance, and operation areas prevented the best results. Therefore, premature failure rates were still high.

From the 2000s on, with the consolidation of maintenance engineering activities, failure analysis was established to improve equipment performance.

In this context, predictive maintenance started to be increasingly used in the so-called Industry 4.0 – concept used for the first time in 2011, by the German government, in its quest to promote the computerization of manufacturing and data integration.

Industry 4.0 and the Internet of Things (IoT)

Also called the fourth industrial revolution, Industry 4.0 is characterized by intelligent technologies such as Artificial Intelligence, Machine Learning, Robotics, and Analytics based on big data. 

With these resources, it became possible for much greater interaction between machines, which gained greater integration capacity and autonomy. Thus, with the Internet of Things, devices are monitored through smart online sensors, allowing maintenance to be carried out more consistently and in the shortest possible time to predict and avoid unwanted occurrences.

In turn, Big Data resources enable the management of a large amount of data, contributing to the fact that machine maintenance decisions can be made before real problems occur.

Since then, thanks to the development of new technologies, predictive maintenance has been improving, indicating equipment failures with increasing accuracy and richness of detail.

Understand how smart sensors have changed the predictive market. 

The predictive monitoring of machines was done on-site until some time ago, which required the presence of technicians in factories to collect data. For this, a cable attached a sensor to the end of the equipment. The problem is that this process was much more laborious and expensive and therefore was usually only done on a monthly basis.

With smart sensors, predictive maintenance eliminates the need for in-person inspections. Data collection is done online and automatically, without disassembling and reassembling machines to determine if they are running well.

The sensors connected to the machines generate data that is captured and transmitted via the internet. This information is then analyzed to predict maintenance needs and limit the time this equipment will remain idle.

Benefits of using sensors for industries

* More accurate and frequent remote monitoring, which enables greater predictability of failures and avoids unnecessary repairs;

* Previously determines the need for maintenance, eliminating the need to disassemble the machines for inspections;

* Avoids problems that may generate the need for corrective maintenance, which is more complex and expensive;

* Decreased machine downtime, ensuring production continuity and increasing efficiency and safety on the production line;

* Increased useful life of equipment parts, reducing the need to stock spare parts;

*Generating a large amount of data can be combined to indicate the right moment to carry out predictive maintenance, increasing decision-making agility.

Applications of smart sensors in Industry 4.0

The use of wireless sensors in predictive maintenance enables the detection of wear and bearing defects, misalignments, imbalances, looseness, and other deficiencies that lead to machine failures and unexpected stops in the production line. This service can be applied in engines, electronic and power systems, boilers, steam system components, and transformers, among other equipment.

Industries from the most diverse sectors can benefit from this monitoring, even in dangerous places with difficult access.

What are the main types of smart sensors used in industry?

* Vibration: sees mechanical failures by analyzing the vibration of the equipment, such as unbalance, lousy bearing, or coupling.

* Temperature/Humidity measures the equipment’s temperature and humidity.

* Oil: analyzes the oil/lubricant viscosity present in the equipment.

* Ultrasound: Monitors leakage of compressed air, steam, and vacuum, detecting failures in bearings, valves, and electrical substations and saving energy.

Get to know the smart sensor we use in SEMEQ. 

The SEMEQ online vibration smart sensor can detect numerous potential electrical and mechanical failure modes. By analyzing temperature, vibration, electrical current, and other process variables, it is able to cover 100% of the potential failure modes in electric motors.

Besides, SEMEQ’s wireless sensors have high sensitivity, one of the most reliable in the market for detecting minimal vibrations indicative of potential failures.

This happens because we maintain an internal Research & Development department to produce sensors with the most advanced technologies in the market. Thus, we can guarantee efficient and reliable sensors for our customers.

SEMEQ wireless sensor features

  • 10kHZ sensitivity – detects bearing and gear failures.
  • Durable battery for up to three (3) years and replaceable.
  • No need to discard the sensor when the battery runs out.
  • 3G/4G connection and independent operation.
  • Triggers and variable charges.

Transform your industrial park: talk to our consultants.

Semeq has nearly 30 years of existence and has extensive expertise in monitoring wireless predictive maintenance in many industrial segments and small, medium, and large plants.

We are present in 40 countries and have more than 500 plants monitored with our technology. We have offices in North America, South America, Asia, and Europe.

Your company can also benefit from the effects of Industry 4.0 and the use of smart sensors in predictive monitoring.

Count on us to help you optimize production processes, reduce equipment failures, and increase plant performance.

Contact us now!